## References

Anca, R., Martinez-Carrera, S. \& Garcia-Blanco, S. (1967). Acta Cryst. 23, 1010.

Brown, G. M. \& Marsh, R. E. (1963). Acta Cryst. 16, 191.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Martinez, C., Martinez-Carrera, S. \& Garcia-Blanco, S. (1967). Anales. Real Soc. Españ. Fis. Quim. (Madrid), ser. A, 63313.
Cruickshank, D. W. J., Pilling, D. E., Bujosa, A., Lovell, F. M. \& Truter, R. M. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Oxford: Pergamon Press.
Donohue, J. \& Trueblood, K. N. (1952). Acta Cryst. 5, 414.

Ferguson, G. \& Islam, K. M. S. (1966). Acta Cryst. 21, 1000.

Ferguson, G. \& Sim, G. A. (1961). Acta Cryst. 14, 1262. Ferguson, G. \& Sim, G. A. (1962). Acta Cryst. 15, 346.
Florencio, F. \& Smith, P. (1968). Private communication.
International Tables for X-ray Crystallography (1962). Vol. III, p. 276. Birmingham: Kynoch Press.
Krausse, J. von \& Dunken, H. (1966). Acta Cryst. 20, 67.
Ossorio, R. P. (1960). Anales. Real Soc. Españ. Fis. Quim. (Madrid), ser. B, 56, 379.
Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
Rollett, J. S. \& Sparks, R. A. (1960). Acta Cryst.13, 273.
Sim, G. A., Robertson, J. M. \& Goodwin, T. H. (1955). Acta Cryst. 8, 157.
Schomaker, V., Waser, J., Marsh, R. E. \& Bergman, G. (1959). Acta Cryst. 12, 600.

Acta Cryst. (1970). B26, 979

# The Crystal Structure of a 1:1 Cupric Nitrate-Pyrazine Complex $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot\left(\mathrm{C}_{4} \mathbf{N}_{2} \mathrm{H}_{4}\right)$ 

By A.Santoro, A.D. Mighell and C.W. Reimann<br>National Bureau of Standards, Washington, D.C. 20234, U.S.A.

(Received 23 June 1969)
The crystal structure of a $1: 1$ cupric nitrate-pyrazine complex, $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} .\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{H}_{4}\right)$, was determined by single-crystal X-ray diffraction techniques. This compound crystallizes in the orthorhombic system with $a=6.712, b=5 \cdot 142$, and $c=11.732 \AA$, space group Pmna, $\varrho=2.19 \mathrm{~g} . \mathrm{cm}^{-3}$ and $Z=2$. The intensities of 642 unique reflections were recorded by the $2 \theta$-scan method and the structure was solved by an analysis of the three-dimensional Patterson map. The structure is a coordination polymer and consists of linear-Cu-pyrazine-Cu-pyrazine- chains. The nitrate groups lie in mirror planes normal to the chain axes and they are coordinated to the $\mathrm{Cu}^{\mathrm{II}}$ ion unsymmetrically through two oxygen atoms. Refinement by anisotropic least-squares analysis gave an $R$ value of 0.04 .

## Introduction

Aromatic rings which contain pyridine type nitrogen atoms $(>N)$ coordinate to transition metal ions. If the coordinating molecule contains more than one pyridine type nitrogen atom, bonding may occur to more than one metal ion to form a polynuclear species. Pyrazine (1,4-diazine)

and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ form an anhydrous crystalline complex with a $1: 1$ pyrazine to $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ ratio. In pyrazine, equivalent nitrogen atoms occupy opposite vertices in the ring and a $1: 1$ composition suggests chains of the type-pyrazine- Cu -pyrazine- Cu -. As $\mathrm{Cu}^{\mathrm{II}}$ is generally fourfold or sixfold coordinated, the nitrate groups must be involved in the coordination to the metal ion.

The structure analysis of the complex was undertaken to elucidate the features of the copper-ring linkage and to determine the role of the nitrate groups in the coordination about the copper ion.

## Experimental

Crystals of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} .\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{H}_{4}\right)$ were grown by evaporation of an aqueous solution of cupric nitrate and pyrazine. Crystal symmetry and approximate cell parameters were determined from zero and upper level precession photographs. Systematic extinctions ( $h 0 l$ : $h+l=2 n+1 ; h k 0: h=2 n+1)$ indicate that the space group is either Pmna (No. 53) or $P 2 n a$ (No. 30). The centric space group was assigned on the basis of the complete structure determination.

To determine precise unit-cell parameters, the $2 \theta$ angles of a set of eighteen reflections were measured on a single-crystal diffractometer using molybdenum radiation ( $\lambda=0.71068 \AA$ ). The cell parameters were then refined by least-squares analysis to obtain the best agreement between the calculated and observed 20
angles. Assuming $Z=2$, the X-ray density was found to be $2.19 \mathrm{~g} . \mathrm{cm}^{-3}$, in good agreement with the density of $2.15 \mathrm{~g} . \mathrm{cm}^{-3}$ measured by the flotation method. A summary of the crystal data is given in Table 1.

Table 1. Crystal data for $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} .\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{H}_{4}\right)$

$$
\begin{array}{cc}
a=6.712(1) \AA^{*} & \text { Space group Pmna } \\
b=5.142(1) & Z=2 \\
c=11.732(2) & \varrho_{0}=2 \cdot 15 \mathrm{~g} . \mathrm{cm}^{-3} \\
\mu=27.3 \mathrm{~cm}^{-1} & \varrho_{c}=2 \cdot 19 \\
\text { Systematic extinctions } \\
h 0 l: & h+l=2 n+1 \\
h k 0: \quad h=2 n+1
\end{array}
$$

* The numbers in parentheses are standard deviations obtained from a least-squares refinement using 18 experimental $2 \theta$ values.

Intensities were measured by the $2 \theta$ scan method with Mo $K \alpha$ radiation. The rate of scanning was $2^{\circ} \min ^{-1}$, and the scan range (SR) was calculated using the equation $\mathrm{SR}=2 \cdot 1+1 \cdot 0 \tan \theta$. The backgrounds were measured for 30 seconds at $2 \theta \pm \frac{1}{2} \mathrm{SR}$. The crystal used for intensity measurements was approximately a parallelepiped of length 0.25 mm and cross-section $0.046 \times 0.023 \mathrm{~mm}$. The intensities of six standard reflections, measured periodically along with the data, held constant to within $1 \%$. A standard deviation $(\sigma)$ was calculated for each intensity and if the net number of counts did not exceed $2 \sigma$ the reflection was considered unobserved and its intensity was set equal to $\sigma$. In the $2 \theta$ range $0-60^{\circ}, 1089$ reflections were recorded. These reflections were averaged to obtain a unique set of 642 reflections of which 217 were labelled unobserved. The intensity data were corrected for Lorentz and polarization factors but in view of the small size of the crystal no absorption correction was applied.

## Determination

As indicated above, there are two molecules of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$. $\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{H}_{4}\right)$ per unit cell. If the centrosymmetric space group is assumed, the nitrogen atoms and all or some of the oxygen atoms must lie on special position $m$ or 2 and the positions of the copper atoms must have symmetry $2 / \mathrm{m}$. These positions account for the observation that the $h k l$ reflections with $h+l$ even are significantly stronger than those with $h+l$ odd.

A three-dimensional Patterson map was calculated using the complete set of data. The analysis of this map showed that all the principal vectors could be accounted for by placing the copper atom at the origin, the oxygen and nitrogen atoms of the nitrate groups on special positions $m$, the nitrogen atoms of the pyrazine ring on special positions $2(e)$, and the carbon atoms on general positions. Thus the complete structure is specified by one copper atom, one nitrate group, and by one carbon atom and one nitrogen atom in the pyrazine ring.

## Refinement

The model derived from the Patterson map was refined by full-matrix least-squares analysis. The quantity minimized was $\sum w\left(F_{o}-F_{c}\right)^{2}$ with the weighting scheme $w=1$ for $F_{o} \leq 30$ and $w=30 / F_{o}$ for $F_{o}>30$. The $F_{o}$ of an unobserved reflection was weighted zero or one depending on whether $F_{c}$ was less or greater than the assigned value of $F_{0}$. The scattering factors used in the structure factor calculations are those given in International Tables for X-ray Crystallography (1962) for neutral nickel, nitrogen, carbon and hydrogen atoms and for the $\left(\mathrm{O}^{-}\right)$oxygen atom. After 3 cycles of isotropic refinement, the $R$ index

$$
R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|
$$

based on 425 observed reflections was 0.092 .
A difference Fourier synthesis calculated at this point showed that the largest peaks corresponded to the hydrogen atoms in the pyrazine molecule. The model including hydrogen atoms was then refined and after 3 cycles of full-matrix anisotropic least-squares analysis the $R$ index was $0 \cdot 040$. In this refinement, the positional parameters of the hydrogen atom were treated as variables but a fixed isotropic temperature factor of $3 \cdot 5$ was assigned. The average shift/error for the 46 refined parameters was 0.09 . As the refinement of the trial model was satisfactory in the space group Pmna, no further consideration was given to the acentric space group. The final positional and thermal parameters are presented in Tables 2 and 3, and the structure factors are given in Table 4.

Table 2. Atomic coordinates

|  |  | $y$ | $z$ |
| :--- | :---: | :--- | :---: |
| Cu |  |  |  |
| C | 0 | 0 | 0 |
| H | $0.39666(56)^{*}$ | $0.16649(83)$ | $-0.06476(35)$ |
| $\mathrm{N}(1)$ | $0.324(12)$ | $0.288(14)$ | $-0.1064(57)$ |
| $\mathrm{N}(2)$ | 0 | 0 |  |
| $\mathrm{O}(1)$ | 0 | $0.26258(102)$ | $0.19356(42)$ |
| $\mathrm{O}(2)$ | 0 | $0.01767(87)$ | $0.17111(13)$ |
| $\mathrm{O}(3)$ | 0 | $0.41383(100)$ | $0.11029(42)$ |
|  | 0 | $0.33353(106)$ | $0.29226(40)$ |

* The numbers in parentheses are standard deviations in the last significant figures.


## Description and discussion

The structure of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} .\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{H}_{4}\right)$ consists of linear - Cu -pyrazine- Cu -pyrazine- chains with nitrate anions bonded to the copper atoms unsymmetrically through two oxygen atoms. One such chain is shown schematically in Fig.1. The detailed structure viewed along the $c$ axis is shown in Fig. 2. The projection of the structure along the polymer axis is given in Fig. 3. These Figures show that the pyrazine-copper chains lie on twofold axes parallel to the crystallographic $a$
axis, that the nitrate groups lie in mirror planes normal to the axis of the chains, and that the copper atoms occupy $2 / m$ sites. Consequently the four carbon atoms and two nitrogen atoms in the pyrazine rings are coplanar. The details of the copper coordination polyhedron are shown in Fig.4. Fig. 5 shows the pyrazine molecule and nitrate group. All unique bond distances and angles are included in the Figures, and these values, with e.s.d.'s, are given in Table 5.

The coordination polyhedron about the cupric ion is a distorted octahedron which consists of two ni-
trogen atoms and four oxygen atoms (Fig.4). Two of the oxygen atoms and the two nitrogen atoms describe a nearly square parallelogram with the cupric ion at its center approximately $2 \AA$ from the four ligands. The two remaining oxygen atoms are considerably further from the metal ion ( $\sim 2 \cdot 5 \AA$ ). Copper(II) forms a wide variety of sixfold coordinated complexes with approximately tetragonal coordination symmetry. The combination of four short and two long bonds is most commonly observed. The stereochemistry of octahedrally coordinated cupric ion complexes has been

Table 3. Anisotropic thermal parameters $\left(\times 10^{5}\right)$
The general anisotropic temperature factor has the form $\exp \left[-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l 2 \beta_{33}+2 h k \beta_{12}+2 h l \beta_{13}+2 k l \beta_{23}\right)\right]$.

|  | $\beta_{11}$ | $\beta_{22}$ | $\beta_{33}$ | $\beta_{12}$ | $\beta_{13}$ | $\beta_{23}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | ---: |
| Cu | $365(15) *$ | $1955(34)$ | $222(6)$ | 0 | 0 | $-172(16)$ |
| C | $588(71)$ | $2204(139)$ | $418(25)$ | $4(88)$ | $-68(35)$ | $132(54)$ |
| $\mathrm{N}(1)$ | $506(67)$ | $2086(140)$ | $251(22)$ | 0 | 0 | $-150(73)$ |
| $\mathrm{N}(2)$ | $1228(106)$ | $2129(180)$ | $233(30)$ | 0 | 0 | $-68(63)$ |
| $\mathrm{O}(1)$ | $1134(74)$ | $1624(135)$ | $292(23)$ | 0 | 0 | $-71(59)$ |
| $\mathrm{O}(2)$ | $2066(127)$ | $2249(158)$ | $473(34)$ | 0 | 0 | $141(64)$ |
| $\mathrm{O}(3)$ | $3353(173)$ | $3061(204)$ | $317(31)$ | 0 | 0 | $-390(73)$ |

* The numbers in parentheses are standard deviations in the last significant figures. An isotropic $B$ (3.5) was assumed for the hydrogen atom.

Table 4. Observed and calculated structure factors $(\times 10)$
The columns are $h, k, F_{o}, F_{c}$ respectively.
Reflections for which the net number of counts observed did not exceed zero by at least twice the standard deviation are marked by an $L$. The value assigned to the observed intensity for these reflections is equal to one standard deviation.


Table 5. Bond distances and angles


* The numbers in parentheses are the standard deviations in the last significant figure.


Fig. 1. Schematic diagram of the linear-coordination polymer, $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} .\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{H}_{4}\right)$. The chain axis is perpendicular to the planes which contain the copper atoms and nitrate groups.


Fig. 2. Projection of the structure along the $c$ axis.


Fig.3. Projection of the structure along the polymer axis ( $a$ axis).
discussed by Orgel \& Dunitz (1957). Also a number of complexes of copper(II) exist in which the bonding in the $x y$ plane is very strong and the electron density in the $d_{z^{2}}$ orbital is raised sufficiently so that no bonding occurs along the $z$ axis. The result is a square-planar complex. For example, in the complex copper bis(dimethylglyoxime) (Bezzi, Bua \& Schiavinato, 1951) the $\mathrm{Cu}-\mathrm{N}$ distance is $1.92 \AA$ and in bis(salicylaldiminato)copper(II) (Stewart \& Lingafelter, 1959) the $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{N}$ distances are $\sim 1.84 \AA$.

In the present case, the bonding in the $x y$ plane is not very strong as evidenced by the $\mathrm{Cu}-\mathrm{N}(1.984 \AA)$ and $\mathrm{Cu}-\mathrm{O}(2 \cdot 010 \AA)$ distances. Thus a complex with four short and two long bonds rather than a squareplanar complex is most consistent with the $x y$ bond distances. A simple elongation of the type described by Orgel \& Dunitz (1957), however, cannot occur when the nitrate group acts as a bidentate ligand because of the constraint imposed by the geometry of the nitrate group. As a result of this constraint, the elongation must be accompanied by a large angular deviation ( $\sim 34^{\circ}$ ) from perpendicularity with the plane of the other four atoms. This unsymmetrical bidentate coordination of the nitrate group is clearly reflected in the $\mathrm{N}-\mathrm{O}$ bond distances. The strongly bound $\mathrm{O}(1)$ atom has an $\mathrm{N}(2)-\mathrm{O}(1)$ distance of $1.287 \AA$, while weakly bound $\mathrm{O}(2)$ has an $\mathrm{N}(2)-\mathrm{O}(2)$ distance of $1.249 \AA$. This difference, coupled with the fact that the $\mathrm{N}(2)-\mathrm{O}(2)$ distance is significantly longer than the distance between $N(2)$ and the unbound oxygen atom $O(3)$ indicates that $O(2)$ is actually coordinated to the copper(II) ion. The latter conclusion is also supported by the fact that there is no prohibition on the position of the nitrate group which would preclude sufficient rotation to allow only $\mathrm{O}(1)$ to bond in a square-planar complex. It should also be noted that a symmetrical bidentate coordination of the nitrate group could have been achieved with reasonable $\mathrm{Cu}-\mathrm{O}$ distances (1.95-2.00 $\AA$ ) and with $\mathrm{Cu}<\mathrm{O}_{\mathrm{O}}^{\mathrm{O}}$ angle of $60-70^{\circ}$. The angular distortion in that case would have been no larger than the distortion actually observed $\left(\sim 34^{\circ}\right)$. Thus it appears that the $d_{z}{ }^{2}$ orbital destabilization provides the most consistent account for the markedly unsymmetrical coordination of the nitrate groups.

The bond distances and angles observed in coordinated pyrazine can be compared with those observed in molecular pyrazine (Wheatley, 1957). This comparison is especially appropriate because, in both structures, the pyrazine rings have $2 / \mathrm{m}$ symmetry with the twofold axis passing through the two nitrogen atoms. The bond distances observed in coordinated pyrazine (C-C, $1 \cdot 387$; C-N, $1 \cdot 330 \AA$ ) are in substantial agreement with those (C-C, $1 \cdot 378 ; \mathbf{C}-\mathrm{N}, 1 \cdot 334 \AA$ ) reported by Wheatley. However, the $\mathrm{N}<\mathrm{C}_{\mathrm{C}}^{\mathrm{C}}$ angle of $118.7^{\circ}$ in the coordinated ring is significantly greater


Fig.4. Details of the $\mathrm{Cu}^{1 \mathrm{I}}$ coordination. Unique bond distances and angles are indicated.



Fig. 5. The coordinated pyrazine molecule and the nitrate group. Unique bond distances and angles are indicated.
than the corresponding $\mathrm{N}<{ }_{C}^{\mathbf{C}}$ angle $\left(\sim 115^{\circ}\right)$ found in both molecular pyrazine and in molécular 1,3-diazine (Wheatley, 1960). This increase in the $N<_{C}^{C}$ angle when pyrazine is coordinated is probably due to the involvement of the lone-pair electrons on the nitrogen atom in bonding to the copper atom which reduces the repulsion between lone-pair and ring electrons.

Computer calculations were made with the Program System for X-ray Crystallography (1967) developed at the University of Maryland in collaboration with the National Bureau of Standards and the Geological Survey. The authors thank Floyd Mauer and E.

Prince of NBS for their assistance in the use of the computer-controlled X-ray diffractometer.

## References

Bezzi, S., Bua, E., \& Schiavinato, G.(1951). Gazz. chim. ital. 81, 856.
International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
Orgel, L. E., \& Dunitz, J. D. (1957). Nature, Lond. 179, 462.
Program System for X-ray Crystallography (1967). Technical Report 67-58, Computer Science Center, University of Maryland.
Stewart, J. M. \& Lingafelter, E. C. (1959). Acta Cryst. 12, 842.
Wheatley, P. J. (1957). Acta Cryst. 10, 182.
Wheatley, P. J. (1960). Acta Cryst. 13, 80.

